Bayesian Deconvolution of Oil Well Test Data Using Gaussian Processes
نویسندگان
چکیده
We use Bayesian methods to infer an unobserved function that is convolved with a known kernel, using noisy realizations of an observable process. Our method is based on the assumption that the function of interest is a Gaussian process. Thus, the resulting convolution is also a Gaussian process. This fact is used to obtain inferences about the unobserved process, effectively providing a deconvolution method. We apply the methodology to the problem of estimating the parameters of an oil reservoir from well-test pressure data. From a system of linear ordinary differential equations, we write the equation that governs the dynamics of pressure in the well as the convolution of an unknown process with a known kernel. The unknown process describes the structure of the well. This is modeled with a Gaussian process whose mean function is obtained as a linear combination of specific bases. A purposedly designed directional Monte carlo method is used to sample from the posterior distribution of the parameters. Applications to data from Mexican oil wells show very accurate results.
منابع مشابه
Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملBayesian Blind Deconvolution of Images Comparing Jmap, Em and Bva with a Student-t a Priori Model
Blind image deconvolution consists in restoring a blurred and noisy image when the point spread function of the blurring system is not known a priori. This inverse problem is ill-posed and need prior information to obtain a satisfactory solution. Regularization methods, well known, for simple image deconvolution is not enough. Bayesian inference approach with appropriate priors on the image as ...
متن کاملUsing a novel method for random noise reduction of seismic records
Random or incoherent noise is an important type of seismic noise, which can seriously affect the quality of the data. Therefore, decreasing the level of this category of noises is necessary for increasing the signal-to-noise ratio (SNR) of seismic records. Random noises and other events overlap each other in time domain, which makes it difficult to attenuate them from seismic records. In this r...
متن کاملBayesian Blind Deconvolution of sparse images with a Student-t a priori model
Blind image deconvolution consists in restoring a blurred and noisy image when the point spread function of the blurring system is not known a priori. This inverse problem is ill-posed and need prior information to obtain a satisfactory solution. Regularization methods, well known, for simple image deconvolution is not enough. Bayesian inference approach with appropriate priors on the image as ...
متن کاملBayesian Blind Deconvolution Using a Student-t Prior Model and Variational Bayesian Approximation
Deconvolution consists in estimating the input of a linear and invariant system from its output knowing its Impulse Response Function (IRF). When the IRF of the system is unknown, we are face to Blind Deconvolution. This inverse problem is ill-posed and needs prior information to obtain a satisfactory solution. Regularization theory, well known for simple deconvolution, is no more enough to obt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012